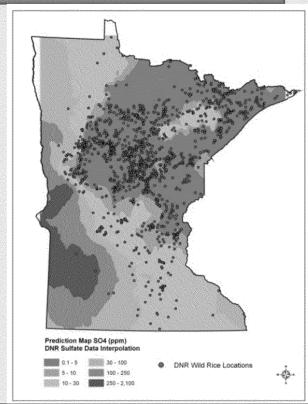
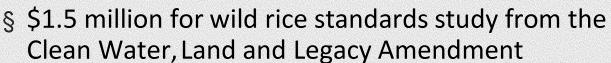
Wild Rice Sulfate Standard Study & Preliminary Analysis


R5 State and Tribal WQS Conference Call May 8, 2014

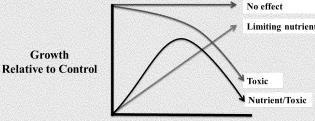
Phil Monson Minnesota Pollution Control Agency

Wild Rice Sulfate Standard


- q Studies found correlation between lower sulfate and wild rice
- q Sulfate standard adopted in 1973 to protect wild rice production
 - § "10 mg/L, applicable to water used for production of wild rice during periods when the rice may be susceptible to damage by high sulfate levels"

Implementing the Sulfate Standard

- q Additional information needed
- q Study protocol developed
- q 2011 Legislation:


- § Advisory committee to provide input on study protocol, research results and rulemaking
- § MPCA to initiate rulemaking upon completing the study

Wild Rice Standard Study

- q Goal: Enhance understanding of the effects of sulfate on wild rice; inform standard evaluation
- q Key avenues of investigation:
 - § Laboratory experiments
 - § Field survey
 - § Container experiments
 - § Sediment experiments

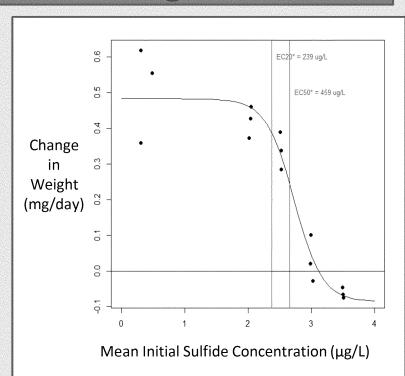
Concentration in hydroponic growth medium (Sulfate, sulfide, iron, copper, zinc...)

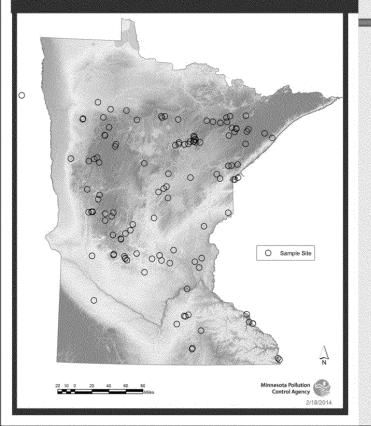
q Any standard modification will be based on multiple info. sources


Hydroponic Growth Tests (Dose-Response)

- q Germination Test (50 seeds per jar; 3 jars per treatment)
- q Juvenile Seedling Test (7 plants per bottle, 3 bottles per treatment)
- q Preliminary analysis:
 - q Sulfate treatments did not produce statistically-significant impacts in hydroponic tests
 - q Sulfide treatments (exposure level #2) did produce a statistically-significant reduction of seedling growth

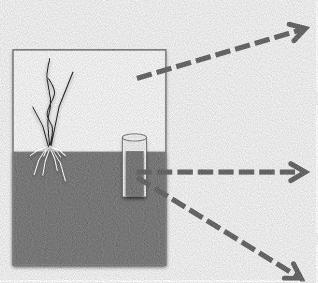
Hydroponic seedling exposures


- q Maintaining
 exposure levels
 was a
 challenge,
 addressed in
 analysis
- q Method exposed whole seedling, which may or may not be an issue


Regression Analysis of Hydroponic Sulfide Seedling Test Results

q Effect
concentration
estimates can
be used to
interpret
results

Sites Sampled During the MPCA Wild Rice Sulfate Study 2011-2013



Field Survey

- q Can further inform understanding of sulfatesulfide-wild rice relationship
- q Allows examination of other variables
 - § Iron, Others?
- q Targeted site selection
 - § Goal: Characterize potential wild rice habitat across a range of sulfate
 - § Comparing to other data

Wild Rice Field Survey

Other Sediment Properties

Water
organic matter
carbonate content
Organic grain size
Wild rice phytolith presence/absence

Surface water

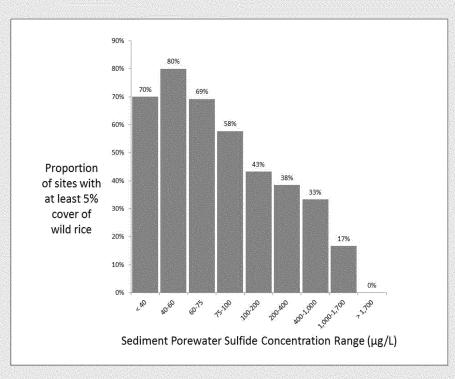
Na, K, Mg, Ca, Fe SO4, Cl

Alkalinity, pH, conductivity, Total P, Total N, Ammonia, Nitrate + Nitrite, transparency

Bulk Sediment Chemistry
Acid-Volatile Sulfide
Total carbon, phosphorus, nitrogen, sulfur
Phosphorus fractionation
Simultaneously-Extracted Metals:
Fe, Cu, Zn, Co, Ni, Mn, Mo, Se, As, B

Porewater

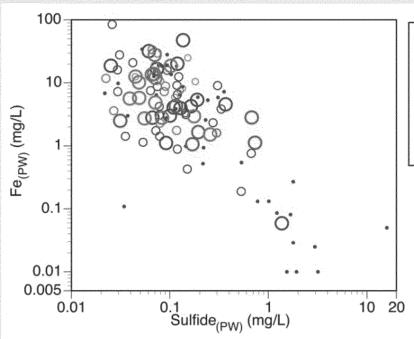
Sulfide
Na, K, Mg, Ca,
SO₄, Cl
Total P, Total N, Silica
Ammonia, Nitrate + Nitrite
DOC (dissolved organic carbon)
Fe, Cu, Zn, Co, Ni, Mn, Mo, Se, As, B



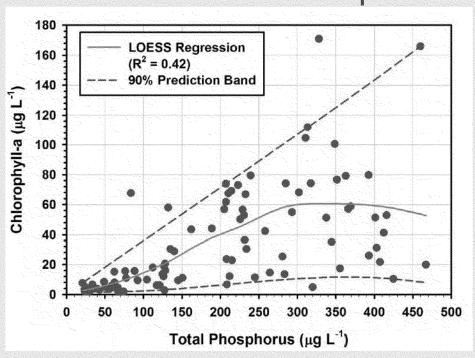
Sediment coring at field site

Proportion of sites with at least 5% cover of wild rice declines with increasing porewater sulfide

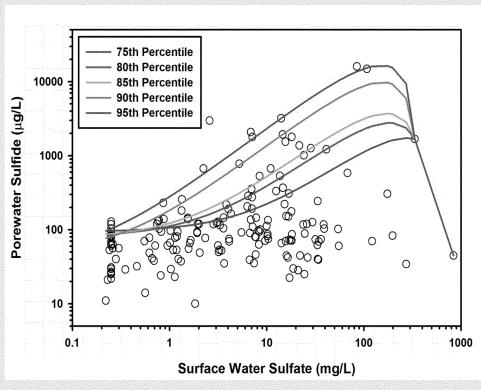
- Field data consistent with observation that wild rice is less successful when porewater sulfide is above 150 to 300 µg/L
- May need to adopt a sediment porewater sulfide standard



Iron in porewater has a strong role in controlling sulfide in porewater

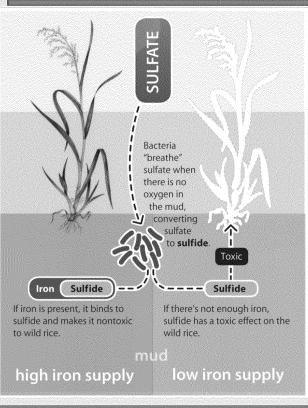

Wild rice tends to grow where porewater is low in sulfide and high in iron

Quantile Regression is an appropriate way to analyze pollutants whose effects have multiple controls



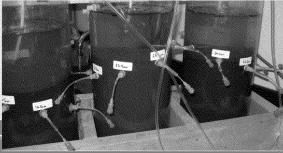
For example:

wedge-shaped data between phosphorus and chlorophyll in streams (Fig. 22, Minnesota Nutrient Criteria Development for Rivers).


Quantile regression is a useful way to relate sulfide levels to surface water sulfate

q Analysis continues

Preliminary Analysis, Summary


- q Although sulfate is not directly toxic to wild rice, it can be converted to sulfide, which can be toxic
- q Laboratory experiments showed reduced seedling growth when sulfide exceeded 150 to 300 μg/L
 - § Field data reinforced this
 - § May need a sediment porewater sulfide standard

Preliminary Analysis, Cont.

- q Sulfide in the porewater is affected by sulfate in surface water and iron in porewater
- q Site-specific standards may be needed
- q Continue to examine if characteristics of water body type affect sulfide concentrations
- q Further explore "period of susceptibility" of wild rice to sulfate

Next Steps

- q Feedback from Advisory Committee
- q Meetings with interested parties
- q Continue data analysis è scientific review doc.
- q Expert scientific review summer 2014
- q If MPCA recommends change to standard:
 - § Develop Technical Support Document
 - § Initiate formal rulemaking
 - § Informal and formal comment opportunities
- q Also exploring implementation & policy questions

More about Scientific Peer Review

q Contracted with independent company -- ERG

Activity	Date/Timeframe DRAFT
MPCA continues to refine the analysis, considering feedback received	April – May 2014
MPCA review document and technical charge sent to peer reviewers and Advisory Committee	Early June 2014
Advisory Committee members submit feedback on review document; ERG sends this feedback to peer reviewers for their consideration	Late June/Early July 2014
Peer review meeting held	Early August 2014
Final meeting summary from ERG	Early September 2014

Thank You!

phil.monson@state.mn.us; 651/757-2258
http://www.pca.state.mn.us/ktqh1083

